大型飞机复合材料主结构的设计与发展(一)
近几年,国外对低成本、高性能复合材料结构在大型飞机上的工程应用进行了广泛深入研究,取得了大量有工程应用价值的研究成果,具体体现在新设计飞机主要承力部件大量应用先进复合材料结构,如A380复合材料机翼、A400M复材翼面与机身、波音787复合材料机翼等。
复材结构在A380上的应用
A380飞机已经交付数家用户,其优良性能和舒适性被广为称道。复材用于该机的部件有翼盒结构,尾翼结构,襟翼、副翼结构,扰流板结构,机身上壁板、机身地板梁(跨度6m)、机身后体球框(6.2m×5.5m,树脂膜溶塑成型工艺RFI)、整流罩结构等。
A380的复材用量约占结构重量25%,其大设计特点就是次将复材用于翼盒,并达到减重1.5t的效果。另外它的碳纤维复材水平尾翼整体油箱的结构半展长达到19m,超过了A320 的机翼半展长,号称是上正在飞行的大复材整体油箱。机身上使用的Glare层板达到470m2,与传统铝合金相比,减重25%以上,疲劳寿命提高10~15倍。垂尾前缘更是使用长达14m的Glare层板结构,大型整体结构的使用可见一斑。
复材结构在波音787上的应用波音787飞机已经飞成功,正在鉴定试飞中,交付用户指日可待。该机的主要结构均为复材结构,其复材用量占全机重量50%,有里程牌意义的是使用了复材机翼、机身结构,并在结构维护上做出了实质性进展,其目标是做到比传统结构的波音767降低使用维护成本30%。同时,TiGr层板(碳纤维增强的钛板)、耐高温复合材料结构也在机翼前缘、发动机吊舱上获得应用。
复材结构在大型飞机上用量迅速上升分析
(1)表明复材的基础研究取得了实质进展,安全性已经不再阻碍其扩大应用。
AC20-107A、B(FAA 复合材料结构设计安全性要求) 要求的内容都得到了贯彻与验证,包括积木式试验验证,尤其是在结构综合设计技术研究,材料应用规范(如波音BMS 8-276)、制造工艺、试验验证等方面(如美国的ACT计划和欧洲的TANGO计划)。正是从这些预研中探索并实践了设计、制造、试验验证流程,汲取了经验,才有了在飞机上工程化应用的底气。其主线是大型整体结构的应用,将结构的强度、刚度和损伤容限结合在一起通盘考虑。这样设计的结构,减少了结构连接,提高了使用寿命,也便于成型装配,更易于保养维护。
.jpg)
A350的复合材料机翼蒙皮
(2)表明结构设计手段与验证技术的进步。
如A380翼盒结构层板厚度达到50mm 以上,对接区更是有100mm以上的整体结构,这都是一般分析方法和制造工艺难以企及和验证的。未经详细分析试验比对,是不可能应用的。还有比如A380的平尾整体复合材料油箱,也是需要大量试验验证其密封和防雷击设计。波音787的发动机吊舱结构长期工作在高温、高噪音的振动环境,细节分析与验证也必不可少,尤其是要弄清楚材料的设计许用值与构件设计许用值、连接区损伤与应变控制关系等。
作为新设计飞机结构,在权衡结构整体性能并关注局部和细节,按部件受力形式选择材料和成型方式,关注制造、使用维护乃至全寿命成本始终是设计追求的目标。例如将结构分为按强度设计的部件、按刚度设计的部件和按功能设计三大类型,其关注核心依然是强度设计件。所有的结构问题大都出于细节设计,因而对细节设计的方法与验证更是复合材料结构设计的焦点,如长桁末端、开口周边、对接搭接区、集中载荷传递区等。
如果还走不出大量使用±45°铺层、在薄壁构件上强调均衡对称、不差别使用部件设计控制应变的思路,也就是说设计部件的主次方向刚度差异不大,没有凸显复材构件的基本特性,也就说明细节设计上还不能驾轻就熟。不大量使用自动铺带(丝)设备、不在主要部件上使用液体成型工艺和非热压罐成型工艺,就不可能实现复材部件的低成本制造。
实际上,相对层板结构而言,蜂窝结构的可设计性更大,发展潜力也更大。尤其是对涵盖功能的结构,如隐身、闪烁蒙皮、保形阵列天线、导电、隔音、降噪等,蜂窝结构都显示了独特的特性,有广阔发展前景。
简单的复材结构设计的判据是,与同样的传统结构减重20%以上相比,全寿命综合使用(维护)成本相当。之所以将减重指标定在了20%以上,是考虑了复合材料结构不同于传统结构的制造生产过程,需要重新进行设备、工装投资,还有复材结构的不可再生循环(热塑性复合材料除外)、对环境的非友好等因素都是进行远期收益作风险决策的主要参考因素。但复材结构在抗疲劳、耐腐蚀、阻止裂纹扩展、隔音降噪、吸波透波等方面的功能是不可替代的,未来发展趋势是传统结构与复材结合而成的混合结构。























.jpg)

















