带缠绕、带铺放成型技术的发展趋势

    先进复合材料(Advanced CompositeMaterials,ACM)是指高性能树脂基复合材料,即用碳纤维等高性能纤维增强的树脂基复合材料,其综合性能与铝合金相当,但比刚度、比强度要高于铝合金。随着先进复合材料的持续快速发展,其应用价值日益显著,在提高航天产品技术性能方面,复合材料的应用优势不仅体现在作为轻质化的结构材料,更体现在作为满足各种应用需求的先进功能材料,以及代表复合材料技术高层次发展的结构/功能一体化和多项功能一体化的高新技术材料。复合材料的广泛应用,在很大程度上取决于复合材料成型工艺。各种低成本制造技术应运而生,纤维缝合技术、树脂转移模塑成型技术(RTM)、树脂膜渗透成型技术(RFI)、低成本模具技术、低温低压固化技术、电子束固化技术、缠绕技术、铺放技术等得到迅速发展和应用。其中,缠绕、铺放技术是近年来发展快、有效的复合材料成型制造技术。缠绕技术是指在控制张力和预定线型的条件下,将预浸胶纤维或布带连续地缠绕在相应于制品内腔尺寸的芯模或内衬上,然后在室温或加热条件下使之固化成一定形状制品的方法。
    铺放技术是指通过使用铺放设备按照一定规律把预浸胶纤维或布带铺放到模具表面,并用压紧辊压实。带缠绕、带铺放则专指以预浸胶布带为材料的复合材料缠绕、铺放成型技术。目前,全已有多种类型的缠绕、铺放设备投入项目研制和实际生产。缠绕、铺放技术在降低制造成本和提高复合材料性能方面显示出极大的优越性和潜力
    随着复合材料相关技术的发展,带缠绕、铺放成型技术呈现出多工艺复合化、成型设备精密化、CAD/CAM技术应用日益增多、成型设备与机器人结合化、热塑性树脂基复合材料逐渐增多及新型固化技术不断应用的发展趋势。
(1)将带缠绕成型与拉挤、铺放、编织、压缩模塑等工艺相结合,提高带缠绕成型的工艺适应性。
    由于带铺放可进行任意角度缠绕,还可在凹形表面缠绕,克服了缠绕工艺的不足;若将其与带缠绕工艺结合起来,可解决某些结构类管状构件的缠绕成型问题。缠绕-拉挤工艺加工的薄壁管改善了制品的力学性能,已用于汽车司机驾驶室框架的制造。带缠绕与注射模塑工艺结合制造的自润滑多面滑动轴承具有卓越的摩擦学行为。
(2)将带铺放成型与电子束固化技术结合是目前研究的热点[3]。
    电子束固化可以大幅度地降低制造时间、材料消耗和能源,是重要的低成本制造技术。传统电子束固化采用铺叠后一次辐射固化,要求电子束的能量高(3~10MeV),不仅使加速器投资巨大,并且辐射防护的投资也随之增加。意大利的Guasti1977年先提出“逐层电子束固化”的思想,完成一层铺叠后即实施电子束固化,只需0.5MeV电子束能量,并可以获得良好的力学性能。带铺放成型与电子束固化技术结合的研究逐渐进入实用阶段。
(3)为带缠绕、带铺放成型设备配备精密张力控制系统,以提高制品成型精度。
    在缠绕、铺放成型过程中,张力与制品的强度、致密度、疲劳性以及一致性有着密切的关系,对制品性能影响极大。国内方面,西工大、哈工大等均在精密张力控制系统方面进行了大量研究工作,并取得阶段性成果;国外方面,法国已开发出一种用于粗纱的张力控制系统。
(4)CAD/CAM技术在带缠绕、带铺放成型工艺及装备中的应用日益增多。
    CAD/CAM与缠绕、铺放成型工艺的结合,有助于缩短产品设计周期、减少废品率、提高制品的质量,提高自动化水平及生产柔性。国内外均有一些实用化的软件问世,但与传统CAD/CAM技术相比,复合材料成型CAD/CAM技术的研究才刚刚起步,研究成果有限。
(5)将缠绕、铺放成型设备与机器人相结合,增强成型设备的柔性及适用范围。
    机器人用于带缠绕、带铺放成型,具有自由度多、运动灵活、工艺范围宽等优点,尤其适合小型复杂构件的缠绕、铺放成型,如不对称构件和双凹面构件等。欧美及加拿大正在研究开发机器人缠绕机,如比利时Leuven天主教大学用一台PUMA-762机器人与两轴数控缠绕机联接,缠绕出多种零件 ;加拿大OTTAWA大学也用机器人成功缠绕了T 形管;德国AACHEN工业大学建成了一个复合材料柔性制造单元,己成功生产出机床主轴、飞机机身等零件。
(6)热固性树脂基复合材料成型向热塑性树脂基复合材料成型方向发展。
    据统计,从1994年以来,热塑性复合材料是同期热固性复合材料增长的2倍。该高速增长可以用热塑性树脂基复合材料良好的机械性能、耐温性能、介电常数及可循环性来解释,尤其是它的可回收、可重复利用及不污染环境的特性适应了当今材料环保的发展方向。国外已有杜邦、帝国化学、BASF和德国凯瑟斯路登大学等多家大公司和科研机构对热塑性树脂基复合材料的成型工艺进行了研究和生产。国内有北京航空材料研究院先进复合材料国防科技重点试验室等少数机构对热塑性预浸带进行了缠绕试验,并对制品性能进行了初步分析。目前国内这种工艺尚处于初步开发的阶段,发展空间较大。
(7)新型固化技术与在线固化监测技术不断出现。
    红外加热、微波加热、火焰加热、电子束固化等技术可缩短固化周期,减少残余应力,提高复合材料的力学及物理性能,有利于降低成本。法国航空航天公司已对固体火箭发动机缠绕壳体的电子束固化技术进行了成功演示,其综合性能优于常规的加热固化复合材料。此外,超声技术以及光纤传感技术等均用于在线固化监测过程。前苏联在壳体缠绕成型过程中采用了磁场中缠绕及固化的工艺方法,可使制品实现更为良好的固化效果。