不饱和聚酯复材改性3
不饱和聚酯树脂(UPR)具有良好的力学性能、电学性能和耐化学性能,而且原料易得和价格低廉,其复合材料被广泛应用于交通、建材、电子等工业,近20年来在全发展迅速。随着科学技术的发展与各种应用的需求,对不饱和聚酯树脂(UPR)复合材料性能的要求越来越高,也促进了它的开发和应用。介绍了几种新开发和应用的不饱和聚酯树脂(UPR),并且综述了不饱和聚酯(UPR)复合材料改性方面的新发展,具体叙述了不饱和聚酯(UPR)复合材料,在表面、界面、低收缩改性以及天然纤维,和无机物增强方面的研究,着重介绍了不饱和聚酯(UPR)层状硅酸盐纳米复合材料的制备和性能。不饱和树脂网(www.upr-e.cn)专家,对此分别一一作了介绍:UPR复合材料的表面氟化改性;UPR/玻璃纤维复合材料的界面改性;UPR复合材料的低收缩改性;天然纤维增强;UPR/无机物复合材料;UPR/层状硅酸盐纳米复合材料。
3、UPR复合材料的低收缩改性
不饱和聚酯在固化过程中的体积收缩约为5%~10%,严重影响了玻璃钢(FRP)制品的耐翘曲性、尺寸精度、耐应力开裂性以及表面平滑性。因此研究低收缩或无收缩的UPR成为研究的重要方向。
(1)低收缩添加剂
研究发现,在UPR中加入低收缩添加剂(LPA)可降低收缩,LPA是一些热塑性聚合物如聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯、热塑性聚氨酯和聚酯等。LPA的类型、相对分子质量和浓度,对不饱和聚酯树脂的收缩、表面质量,和模压聚合物材料的尺寸控制有一定影响。研究结果表明要获得较好的收缩控制,分子质量高的LPA比分子质量低的要好,而且LPA的含量不能太高。LPA在降低片状模压、团状模压、注射模压等高温模压过程不饱和聚酯的收缩很有效。
(2)影响收缩效果的因素
大多数LPA应用于高温和高压过程,其降低收缩的效果与以下几个因素有关,如热膨胀、相分离、LPA与固化UPR树脂之间的相转变、沿界面或在LPA相中形成的孔隙结构等。在模压的过程中,混合物先被加热到模型的温度,不饱和聚酯树脂和LPA产生热膨胀,引发剂分解并引发UPR分子与苯乙烯单体的自由基共聚。分子质量的增大和反应的UPR树脂的极性的改变,使原来均质的体系变成局部不均质,UPR趋于相分离,LPA产生的热膨胀部分地补偿了聚合过程的收缩。随着固化过程继续,UPR成为连续相、LPA成为分散相。固化后形成孔隙结构或微裂纹结构,这种孔隙或微裂纹产生的孔隙能弥补UPR固化的收缩量。
(3)高温加工过程的低收缩控制
在高温片状模压(SMC)加工过程中,混合物先从室温加热到模型的温度,一般为150℃,然后是强烈的反应温升至约200℃,在到达放热峰后,温度降低,后部件在脱模时冷却。整个模压过程温度有很大变化。专家介绍,相应的模压材料的体积变化分为三个阶段:加热时热膨胀;固化时收缩;脱模和冷却时进一步热收缩。要获得加工过程有效的收缩控制,LPA在加热和反应时应有较大的热膨胀,在冷却时要形成微孔。
(4)低温加工过程的低收缩控制
目前低压/低温的片状模压(SMC),树脂转移模压(RTM)和真空注入液体复合材料模压,如Seemann复合材料树脂注射模压(SCRIMP)等加工方法越来越受到重视。树脂在低温下加工与在高温下加工的热历史是完全不同的。LPA在不同的加工过程有不同的性能。在室温下加工时,固化过程几乎没有温度的变化,固化周期通常也比较长,因此在低温模压过程LPA的热膨胀不起作用。
3、UPR复合材料的低收缩改性
不饱和聚酯在固化过程中的体积收缩约为5%~10%,严重影响了玻璃钢(FRP)制品的耐翘曲性、尺寸精度、耐应力开裂性以及表面平滑性。因此研究低收缩或无收缩的UPR成为研究的重要方向。
(1)低收缩添加剂
研究发现,在UPR中加入低收缩添加剂(LPA)可降低收缩,LPA是一些热塑性聚合物如聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯、热塑性聚氨酯和聚酯等。LPA的类型、相对分子质量和浓度,对不饱和聚酯树脂的收缩、表面质量,和模压聚合物材料的尺寸控制有一定影响。研究结果表明要获得较好的收缩控制,分子质量高的LPA比分子质量低的要好,而且LPA的含量不能太高。LPA在降低片状模压、团状模压、注射模压等高温模压过程不饱和聚酯的收缩很有效。
(2)影响收缩效果的因素
大多数LPA应用于高温和高压过程,其降低收缩的效果与以下几个因素有关,如热膨胀、相分离、LPA与固化UPR树脂之间的相转变、沿界面或在LPA相中形成的孔隙结构等。在模压的过程中,混合物先被加热到模型的温度,不饱和聚酯树脂和LPA产生热膨胀,引发剂分解并引发UPR分子与苯乙烯单体的自由基共聚。分子质量的增大和反应的UPR树脂的极性的改变,使原来均质的体系变成局部不均质,UPR趋于相分离,LPA产生的热膨胀部分地补偿了聚合过程的收缩。随着固化过程继续,UPR成为连续相、LPA成为分散相。固化后形成孔隙结构或微裂纹结构,这种孔隙或微裂纹产生的孔隙能弥补UPR固化的收缩量。
(3)高温加工过程的低收缩控制
在高温片状模压(SMC)加工过程中,混合物先从室温加热到模型的温度,一般为150℃,然后是强烈的反应温升至约200℃,在到达放热峰后,温度降低,后部件在脱模时冷却。整个模压过程温度有很大变化。专家介绍,相应的模压材料的体积变化分为三个阶段:加热时热膨胀;固化时收缩;脱模和冷却时进一步热收缩。要获得加工过程有效的收缩控制,LPA在加热和反应时应有较大的热膨胀,在冷却时要形成微孔。
(4)低温加工过程的低收缩控制
目前低压/低温的片状模压(SMC),树脂转移模压(RTM)和真空注入液体复合材料模压,如Seemann复合材料树脂注射模压(SCRIMP)等加工方法越来越受到重视。树脂在低温下加工与在高温下加工的热历史是完全不同的。LPA在不同的加工过程有不同的性能。在室温下加工时,固化过程几乎没有温度的变化,固化周期通常也比较长,因此在低温模压过程LPA的热膨胀不起作用。








































